3-D Figures 10.1 Investigate cross-sections and rotations

ccss	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Identify objects (G.GMD.4)	Can extend thinking beyond the standard, including tasks that may involve one of the following: • Designing • Connecting • Synthesizing • Applying • Justifying • Critiquing • Analyzing • Creating • Proving	Identify the shapes of two dimensional cross sections of three dimensional objects <u>and</u> identify three dimensional objects generated by rotations of two dimensional objects.	Identify the shapes of two dimensional cross sections of three dimensional objects <u>or</u> identify three dimensional objects generated by rotations of two dimensional objects.		Little evidence of reasoning or application to solve the problem Does not meet the criteria in a level 1
Use shapes to solve design problems (G.MG.3, G.MG.1)		Describe objects in context of a situation using geometric shapes their measures, and properties <u>and use</u> <u>them to solve problems</u> <u>related to</u>	Describe objects in context of a situation using geometric shapes, <u>their measures, and</u> <u>properties</u>	Describe objects in context of a situation using geometric shapes	

G.GMD.4 Identify the shapes of two dimensional cross sections of three dimensional objects, and identify three dimensional objects generated by rotations of two dimensional objects.

- G.MG.1 Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder).★
- G.MG.3 Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios).★

3-D Figures 10.2 Develop and apply volume formulas

CCSS 4	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Shapes thi and apply be density sta concepts inco (G.MG.1, tas G.MG.2) ma solve fol design problems (G.MG.3) • [Explain Formulas (G.GMD.1) • J (C Use volume	an extend hinking eyond the candard, acluding asks that hay involve ne of the billowing: Designing Connecting Synthesizing Applying Justifying Critiquing Analyzing Creating Proving	Describe objects in context of a situation using geometric shapes and use them to solve problems related to • <u>density based</u> on area and volume • design problems (ie. <u>maximum volume,</u> <u>minimum cost, etc.)</u> Explain the formulas for <u>all</u> <u>of the following</u> • volume of a cylinder • volume of a pyramid • volume of a cone using dissection arguments, cross sections of three dimensional objects, and Cavalieri's principle Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems in context of a situation.	Describe objects in context of a situation using geometric shapes and use them to solve problems related to • area and volume • <u>design problems</u> Explain the formulas for <u>2 of</u> <u>the following</u> • volume of a cylinder • volume of a pyramid • volume of a cone using dissection arguments, cross sections of three dimensional objects, and Cavalieri's principle Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems <u>in context of a</u> <u>situation.</u>	Describe objects in context of a situation using geometric shapes and use them to solve problems related to • <u>area and volume</u> Explain the formulas <u>for 21</u> <u>of the following</u> • volume of a cylinder • volume of a pyramid • volume of a cone using dissection arguments, cross sections of three dimensional objects, and Cavalieri's principle <u>Use volume formulas</u> for cylinders, pyramids, cones, and spheres to solve problems	Little evidence of reasoning or application to solve the problem Does not meet the criteria in a level 1

- G.MG.1 Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder).★
- G.MG.2 Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot).
- G.MG.3 Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios). \bigstar

G.GMD.1 Give an informal argument for the formulas for the circumference of a circle, area of a circle, volume of a cylinder, pyramid, and cone. Use dissection arguments, Cavalieri's principle, and *informal limit arguments*.

G.GMD.2 (+) Give an informal argument using Cavalieri's principle for the formulas for the volume of a sphere and other solid figures.

G.GMD.3 Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems. \star